Synthesis of Behavioral Models from Scenarios
نویسندگان
چکیده
Scenario-based specifications such as Message Sequence Charts (MSCs) are useful as part of a requirements specification. A scenario is a partial story, describing how system components, the environment, and users work concurrently and interact in order to provide system level functionality. Scenarios need to be combined to provide a more complete description of system behavior. Consequently, scenario synthesis is central to the effective use of scenario descriptions. How should a set of scenarios be interpreted? How do they relate to one another? What is the underlying semantics? What assumptions are made when synthesizing behavior models from multiple scenarios? In this paper, we present an approach to scenario synthesis based on a clear sound semantics, which can support and integrate many of the existing approaches to scenario synthesis. The contributions of the paper are threefold. We first define an MSC language with sound abstract semantics in terms of labeled transition systems and parallel composition. The language integrates existing approaches based on scenario composition by using high-level MSCs (hMSCs) and those based on state identification by introducing explicit component state labeling. This combination allows stakeholders to break up scenario specifications into manageable parts and reuse scenarios using hMCSs; it also allows them to introduce additional domainspecific information and general assumptions explicitly into the scenario specification using state labels. Second, we provide a sound synthesis algorithm which translates scenarios into a behavioral specification in the form of Finite Sequential Processes. This specification can be analyzed with the Labeled Transition System Analyzer using model checking and animation. Finally, we demonstrate how many of the assumptions embedded in existing synthesis approaches can be made explicit and modeled in our approach. Thus, we provide the basis for a common approach to scenario-based specification, synthesis, and analysis.
منابع مشابه
LTSA-MSC: Tool Support for Behaviour Model Elaboration Using Implied Scenarios
We present a tool that supports the elaboration of behaviour models and scenario-based specification by providing scenario editing, behaviour model synthesis, and model checking for implied scenarios.
متن کاملمدلسازی بارش- رواناب در شرایط تغییر اقلیم بهمنظو ر پیشبینی جریانات آتی حوزه صوفیچای
Two major issues through studies on hydrological impact assessment of climate change are the sufficiency of historical data and selection of the best rainfall-runoff model. Climate models, with the ability to simulate climatic variables, are considered as references for future projections. Therefore, the rainfall-runoff model must be able to simulate streamflow using only these variables. Curre...
متن کاملComparison of LARS-WG and SDSM Downscaling Models for Prediction Temperature and Precipitation Changes under RCP Scenarios
Various methods developed to convert large-scale data to regional climatic data. In few studies , the results of these methods have been statistically compared. The main purpose of this study was to compare SDSM and LARS-WG models for Downscaling output data of CANE-SM2 and HADGEM2-ES general circulation models under RCP2.6, RCP4.5 and RCP8.5 scenarios. For this study, precipitation, minimum an...
متن کاملClimate change scenarios generated by using GCM outputs and statistical downscaling in an arid region
Two statistical downscaling models, the non-homogeneous hidden Markov model (NHMM) and the Statistical Down–Scaling Model (SDSM) were used to generate future scenarios of both mean and extremes in the Tarim River basin,which were based on nine combined scenarios including three general circulation models (GCMs) (CSIRO30, ECHAM5,and GFDL21) predictor sets and three special report on emission sce...
متن کاملA New Method for Ranking Distribution Companies with Several Scenarios Data by Using DEA/MADM
In Data Envelopment Analysis, uncertain data are the inseparable part of real models. Natural models usually deal with uncertain and probable data. Many researchers prioritize these kinds of data. For instance, they study fuzzy data, interval data, probabilistic models etc. In this article, we proposed a method in which the decision making units are uncertain in their inputs and outputs. In the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Software Eng.
دوره 29 شماره
صفحات -
تاریخ انتشار 2003